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Summary

 

Free-air CO

 

2

 

 enrichment (FACE) experiments allow study of the effects of elevated
[CO

 

2

 

] on plants and ecosystems grown under natural conditions without enclosure.
Data from 120 primary, peer-reviewed articles describing physiology and production
in the 12 large-scale FACE experiments (475–600 ppm) were collected and summa-
rized using meta-analytic techniques. The results confirm some results from previous
chamber experiments: light-saturated carbon uptake, diurnal C assimilation, growth
and above-ground production increased, while specific leaf area and stomatal
conductance decreased in elevated [CO

 

2

 

]. There were differences in FACE. Trees
were more responsive than herbaceous species to elevated [CO

 

2

 

]. Grain crop yields
increased far less than anticipated from prior enclosure studies. The broad direction
of change in photosynthesis and production in elevated [CO

 

2

 

] may be similar in
FACE and enclosure studies, but there are major quantitative differences: trees were
more responsive than other functional types; C

 

4

 

 species showed little response; and
the reduction in plant nitrogen was small and largely accounted for by decreased
Rubisco. The results from this review may provide the most plausible estimates of
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how plants in their native environments and field-grown crops will respond to rising
atmospheric [CO

 

2

 

]; but even with FACE there are limitations, which are also discussed.
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I. What is FACE?

 

The rise in atmospheric carbon dioxide concentration [CO

 

2

 

],
is one of the best documented global atmospheric changes of
the past half century (Prentice, 2001). Enormous research
efforts have been undertaken to understand how plants and
ecosystems, both natural and managed, will respond to rising
[CO

 

2

 

]. The primary effects on plants of rising [CO

 

2

 

] have
been well documented and include reduction in stomatal
conductance and transpiration, improved water-use efficiency,
higher rates of photosynthesis, and increased light-use efficiency
(Drake 

 

et al

 

., 1997). The majority of these conclusions have
come from studies of individual species grown in controlled
environments or enclosures (for reviews see Kimball, 1983;
Ceulemans & Mousseau, 1994; Gunderson & Wullschleger,
1994; Amthor, 1995; Curtis, 1996; Drake 

 

et al

 

., 1997; Curtis
& Wang, 1998; Saxe 

 

et al

 

., 1998; Norby 

 

et al

 

., 1999; Wand

 

et al

 

., 1999). While the conclusions from these experiments
form the basis for our knowledge of plant physiological responses
to elevated [CO

 

2

 

], there are serious potential limitations to
using enclosure systems when studying the effects of elevated
[CO

 

2

 

] on plants. Enclosures may amplify downregulation
of photosynthesis and production (Morgan 

 

et al

 

., 2001), and
may through environmental modification produce a ‘chamber
effect’ that exceeds the effect of elevating [CO

 

2

 

]. Chambers
also are limited in size and may have limited capacity to allow
investigators to follow trees and crops to maturity within a
valid experimental design (McLeod & Long, 1999). Further,
growing plants in pots restricts the rooting volume and
suppresses plant responses to elevated [CO

 

2

 

] (Arp, 1991).
Large-scale free-air CO

 

2

 

 enrichment (FACE) experiments allow
the exposure of plants to elevated [CO

 

2

 

] under natural and fully
open-air conditions. FACE technology uses no confinement
structures, rather an array of vertical or horizontal vent pipes to
release jets of CO

 

2

 

-enriched air or pure CO

 

2

 

 gas at the periphery
of vegetation plots. FACE relies on natural wind and diffusion
to disperse the CO

 

2

 

 across the experimental area. The first
FACE systems utilized blowers or fans to inject CO

 

2

 

-enriched
air into the treatment area (Hendrey 

 

et al

 

., 1993; Lewin 

 

et al

 

.,
1994). More recent field studies have employed a FACE tech-
nique in which pure CO

 

2

 

 gas is released as high-velocity jets
from emission tubes (through numerous small perforations)
positioned horizontally at the periphery of a FACE octagon
(Miglietta 

 

et al

 

., 2001; Okada 

 

et al

 

., 2001). FACE design
allows good temporal and spatial control of CO

 

2

 

 concentra-
tions throughout crop canopies and also relatively young
homogeneous forest plantations (Hendrey 

 

et al

 

., 1999).

This review focuses on the large-scale FACE facilities
(8–30 m diameter) that have been established on forest,
grassland, desert and agriculture lands (Table 1). These FACE
experiments expose vegetation to elevated [CO

 

2

 

] of 475–
600 ppm, encompass a large number of species and func-
tional groups as well as soil fertilization and stress treatments,
and have reduced edge effects compared with small-scale
(1–2 m diameter) FACE rings. The results of two multisite,
mini-FACE experiments, Bog Ecosystem Research Initiative
(BERI) and Managing European Grasslands as a Sustainable
Resource in a Changing climate (MEGARICH), were recently
reviewed along with some of the large-scale FACE studies
(Nowak 

 

et al

 

., 2004). In this review the results of large-
scale FACE experiments were assessed quantitatively using
meta-analytic statistical methods. The second purpose of this
review was to compare and contrast the results of chamber-
based studies with those of FACE experiments. Only side-by-
side tests of open-top chambers and FACE technology, on the
same soil with the same level of CO

 

2

 

 fumigation, will allow a
direct comparison of [CO

 

2

 

] responses in FACE and in open-
top chambers. In the absence of such experiments, some guide
to differences may be made by quantitatively summarizing
results obtained from the two techniques using a meta-ana-
lytic approach. This has been done here. It is also evident from
Table 1 that FACE experiments have focused on temperate
ecosystems, while tropical, boreal and arctic systems have
been largely ignored. Any serious commitment to discovering
the response of the terrestrial biosphere to atmospheric
change will critically require inclusion of these key biomes.

 

II. Materials and methods

 

Literature searches of primary FACE research in published
peer-reviewed journals were conducted with the 

 

Current
Contents

 

 citation index and the 

 

ISI Web of Science

 

 citation
database. Data from 124 manuscripts that analyzed more
than 40 species from 12 FACE sites were extracted for the
analysis of gas exchange, leaf chemistry, leaf area and yield
variables (Appendix 1). Response means of variables, standard
deviations, and sample sizes from elevated and ambient [CO

 

2

 

]
treatments were either taken from tables, digitized from
figures using digitizing software (Morgan 

 

et al

 

., 2003), or
obtained directly from the authors of the primary studies.

Meta-analytic techniques have been developed for quantitative
integration of research results from independent experiments
(Hedges & Olkin, 1985), and have been widely adapted to
summarize the effects of elevated [CO

 

2

 

] on vegetation (Curtis,
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1996; Curtis & Wang, 1998; Medlyn 

 

et al

 

., 1999, 2001;
Kerstiens, 2001; Ainsworth 

 

et al

 

., 2002, 2003). For this review,
responses of different species, cultivars and stress treatments,
and from different years of the FACE experiments, were
considered to be independent and suited to meta-analytic
analysis. Thus one FACE experiment examining a number of
species in a multifactorial design could contribute multiple
observations to a given response variable (e.g. Curtis & Wang,
1998; Ainsworth 

 

et al

 

., 2003).
The natural log of the response ratio (

 

r

 

 = response in
elevated [CO

 

2

 

]/response in ambient [CO

 

2

 

]) was used as the
metric for analyses (Hedges 

 

et al

 

., 1999; Rosenberg 

 

et al

 

., 2000),
and is reported as the mean percentage change [(

 

r –

 

 1) 

 

×

 

 100]
at elevated [CO

 

2

 

]. The meta-analysis procedure followed the
techniques described by Curtis & Wang (1998), using the
statistical software 

 



 

 (Rosenberg 

 

et al

 

., 2000). A mixed-
model analysis was used, based on the assumption of random
variation in effect sizes between FACE studies. A weighted
parametric analysis was used, and each individual observation
of response was weighted by the reciprocal of the mixed-
model variance, which is the sum of the natural log of the
response ratio and the pooled within-class variance (Hedges

 

et al

 

., 1999). If a 95% confidence interval did not overlap
with zero, then a significant response to elevated [CO

 

2

 

] was
considered.

Differences in the effect size of different categorical groups
were tested according to the method of Curtis & Wang
(1998). The approach taken was to partition total heteroge-
neity within and between levels of each categorical variable.
For example, the photosynthetic type was either C

 

3

 

 or C

 

4

 

, and
by dividing all species into those groups we could test whether
there was significant between-group heterogeneity with
respect to photosynthetic type. Partitioning of variance pro-
ceeded in two steps (Curtis & Wang, 1998). Between-group
heterogeneity (

 

Q

 

B

 

) for each category was examined, then the
data were subdivided according to levels of those categorical
variables revealing significant between group heterogeneity.
The between-group heterogeneity for CO

 

2

 

 effect size for each
variable (

 

A

 

sat

 

, crop yield, etc.) is shown in Table 2.

 

III. Photosynthetic carbon uptake

 

Elevated [CO

 

2

 

] increases photosynthesis by increasing the
carboxylation rate of Rubisco and competitively inhibiting

Table 1 Large-scale free-air CO2 enrichment (FACE) facilities used in this review

Site Location Elevated [CO2]
Site description 
reference Ecosystem

First year of 
exposure (ppm)

Aspen FACE Rhinelander, WI, USA Ambient + 200 Dickson et al. (2000) Aspen forest 1998
FACTS 2 45°36′-N, 89°42′-W
BioCON Cedar Creek, MN, USA 550 Reich et al. (2001) Natural prairie grassland 1998
Cedar Creek 45°24′-N, 93°12′-W
ETH-Z FACE Eschikon, Switzerland 600 Zanetti et al. (1996) Managed grassland 1993
Swiss FACE 47°27′-N, 8°41′-E
FACTS 1 Orange County, NC, USA Ambient + 200 Hendrey et al. (1999) Loblolly pine forest 1996
Duke Forest 35°58′-N, 70°5′-W
Maricopa FACE Maricopa, AZ, USA 550* Lewin et al. (1994) Agronomic C3 and C4 crops 1989

33°4′-N, 111°59′-W Ambient + 200†
Nevada Desert Mojave Desert, NV, USA 550 Jordan et al. (1999) Desert ecosystem 1997

36°49′-N, 115°55′-W
Oak Ridge Roane County, TN, USA Ambient + 200 Norby et al. (2001) Sweetgum plantation 1998

35°54′-N, 84°20′-W
Pasture FACE Bulls, New Zealand 475 Edwards et al. (2001) Managed pasture 1997

40°14′-S, 175°16′-E
POPFACE Viterbo, Italy Ambient + 200 Miglietta et al. (2001) Poplar plantation 1999

42°37′-N, 11°80′-E
Rapolano Chianti Region, Italy 560–600 Miglietta et al. (1997) Vitis vinifera 1995
Mid FACE 43°25′-N, 11°35′-E Solanum tuberosum
Rice FACE Shizukuishi town, Japan Ambient + 200 Okada et al. (2001) Oryza sativa 1998

39°38′-N, 140°57′-E
SoyFACE Champaign, IL, USA 550 Glycine max 2000

40°02′-N, 88°14′-W Zea mays

The Brookhaven National Laboratory (BNL) injection method is described in detail by Hendrey et al. (1993) and Lewin et al. (1994). Pure CO2 
injection methods are described by Miglietta et al. (2001) and Okada et al. (2001). A detailed map of all FACE experiments, and links to 
individual websites, are given at the Carbon Dioxide Information Analysis Center website: http://cdiac.esd.ornl.gov/programs/FACE/
whereisface.html.
*1989–94; †1996–2000.

http://cdiac.esd.ornl.gov/programs/FACE/
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the oxygenation of Ribulose-1,5-bisphosphate (RubP) (Drake
et al., 1997). Exposure to elevated [CO2] resulted in a 31%
increase in the light-saturated leaf photosynthetic rate (Asat)
and a 28% increase in the diurnal photosynthetic carbon
assimilation (A′) when averaged across all FACE experiments
and species (Fig. 1; Appendix 2). Apparent maximum quantum
yield increased by 12%. Stomatal conductance (gs) was reduced
by 20% with growth at elevated [CO2] when averaged for 40
species grown at all 12 FACE experiments (Fig. 1). Growth
under stressful conditions (low N and drought) exacerbated
the decrease in gs. There was no apparent change in the ratio
of intercellular [CO2] : atmospheric [CO2] (ci : ca), and the
instantaneous transpiration efficiency of plants grown under
elevated [CO2] was stimulated by ≈ 50% (Fig. 1). A number
of experimental variables significantly altered the response
of photosynthetic carbon uptake to elevated [CO2], and are
discussed further.

1. C3 vs C4 species

The number of C3 species investigated in large-scale FACE
experiments is eight times greater than the number of C4
species. This is due in part to the assumption, based on
photosynthetic theory, that C4 species would not benefit from
increases in atmospheric [CO2] (Bowes, 1993). However, in
a meta-analytic review of wild C3 and C4 grass (Poaceae) species,
Wand et al. (1999) found similar increases in the assimilation
response of C3 and C4 species (33 and 25% increases, respect-
ively). Our analysis of C4 species was limited to only five
species, but the results contrast very sharply with the analysis
of Wand et al. (1999). Here, Asat was stimulated by elevated
[CO2] in both C3 and C4 species, but the magnitude of the
response was three times greater in C3 than C4 species (Fig. 2).
Asat of three ‘wild’ C4 grasses grown at the BioCON experi-
ment was not stimulated with growth at elevated [CO2], and

Table 2  Between-group heterogeneity for CO2 effect size across categorical variables

Variable k
Photosynthesis 
type (C3 vs C4)

Functional 
group Site Stress

Asat 327 22.90*** 127.94*** 150.41** 19.19**
A′ 146 4.77* 24.09** 58.36*** 1.56
AQY 21 24.06* 13.05
gs 235 1.01 24.09** 41.51*** 25.77**
ci : ca 48 28.27** 24.79*** 8.26*
ITE 35 18.87*** 26.50*** 23.07** 19.51**
Vc,max 228 15.28* 18.76* 23.99***
Jmax 168 36.49*** 57.03*** 12.66*
Vc,max/Jmax 97 13.79* 21.03 0.28
Rubisco 24 0.34 2.28 2.59
Narea 124 24.21*** 25.17** 14.68**
Nmass 100 27.95*** 28.52*** 10.86*
N (%) 33 11.94* 21.19**
Chlarea 40 0.085 0.11 0.345
Chlmass 32 2.93
Chl a : b 20 1.76 1.89 0.66
Sugar 31 5.00 4.82 7.52
Starch 31 15.36** 15.72* 13.25**
Plant height 59 15.24** 18.64* 0.42
Stem diameter 54 1.87 10.97* 5.54*
Leaf number 45 8.71 32.45* 2.63
LAI 54 5.32 5.24 1.67
SLA 114 10.26** 15.55* 18.10* 7.25
DMP 175 16.34** 65.26*** 12.71 4.13
Crop yield 28 9.65** 3.61 17.21**

*P < 0.05; **P < 0.01; ***P < 0.001.
Light-saturated CO2 uptake (Asat), diurnal carbon assimilation (A′), apparent maximum quantum yield of CO2 uptake (AQY), stomatal 
conductance (gs), ratio of intercellular (ci) to atmospheric CO2 concentration (ca), instantaneous transpiration efficiency (ITE), maximum 
carboxylation rate (Vc,max), maximum rate of electron transport (Jmax), ratio of Vc,max : Jmax, Rubisco content in mass/unit area (Rubisco), N 
content on an area, mass and percentage basis, Narea, Nmass, N(%), respectively, chlorophyll content on both an area and mass basis (Chlarea, 
Chlmass), chlorophyll a : chlorophyll b (chl a : b), sugar content in mass/unit area (sugar), starch content in mass/unit area (starch), leaf-area index 
(LAI), specific leaf area (SLA), above-ground dry matter production (DMP). Blank spaces indicate that categorical analysis was not possible 
because only one category was represented. Blanks occur in the photosynthesis type column when only information for C3 species was available. 
Blanks in the functional group column occur when information for only one functional group was available, and in the stress column when no 
stress treatments were imposed. Each response was represented by k studies.
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Asat of C4 crops grown at the Maricopa and SoyFACE sites was
increased by 20 and 15%, respectively. Photosynthetic stimu-
lation is not necessarily expected in C4 species because of the
CO2-concentrating mechanism in C4 leaves (Bowes, 1993;
Ghannoum et al., 2000). There is variation in the CO2
saturation level of C4 leaves. While some species appear to
be CO2 saturated at ambient [CO2], other C4 grasses are not
necessarily saturated at that level (reviewed by Wand et al., 1999).
Wand et al. (1999) suggest that this simple explanation may
account for the variation in stimulation of photosynthesis in
C4 species grown at elevated [CO2].

Stomatal conductance (gs) decreased on average by 20% in
elevated [CO2] and there was no difference between C3 and
C4 species (Fig. 2). Wand et al. (1999) reported a similar
magnitude of decrease in gs for both C3 and C4 grasses. The
instantaneous transpiration efficiency (ITE, A/gs), a leaf-level
measure of water-use efficiency, was significantly different
between C3 and C4 species (Fig. 2; Appendix 2). C3 species
grown under FACE had a 68% increase in ITE, while ITE
was not increased in C4 species, based on six independent
measurements of sorghum. However, individual studies
reported that elevated [CO2] improved the water status and
increased the water-use efficiency in sorghum in the Maricopa
FACE experiment (Conley et al., 2001; Wall et al., 2001).
The discrepancy between the Wand et al. (1999) report and
this review illustrates one of the shortcomings of FACE to
date. Only five C4 species have been investigated in large-scale
FACE experiments, while Wand et al. (1999) reviewed 20
wild C4 species from 48 enclosure studies. Further FACE
experiments on more C4 species are needed to resolve the

discrepancy or confirm the differences between C4 responses
to elevated [CO2] in chamber studies and FACE experiments.

2. C3 functional groups and FACE sites

There was a significant difference in the response of Asat to elevated
[CO2] in different C3 functional groups (QB = 83.928, P <
0.001). Trees showed the greatest response to elevated [CO2],
followed by fertilized C3 crops and C3 grasses (Fig. 3). Shrubs
and legumes both showed a 21% increase in Asat with growth
at elevated [CO2], and forbs showed approximately 15%
increase in Asat (Fig. 3). The 47% increase in Asat for trees is
significantly higher than the previously reported 31% increase
for FACE-grown trees (Curtis & Wang, 1998), but is con-
sistent with the 51% increase in Asat reported for European
tree species grown under elevated [CO2] in field chambers
(Medlyn et al., 1999; Fig. 3). Nowak et al. (2004) also
reported that woody species showed a stronger enhancement
in Asat relative to herbaceous species. This review includes
values for trees grown under both elevated [CO2] and elevated
[O3] at the Rhinelander FACE experiment. Ozone considerably
increased the percentage response of Asat to elevated [CO2]
(59% stimulation with growth under high [O3] and [CO2],
relative to plants grown only in elevated [O3]; Appendix 2).

The same trends in functional groups were not observed
when photosynthesis was measured and integrated over the
diurnal period, although this is based on a much smaller
number of studies. A′ was stimulated most in shrubs and
grasses (Fig. 3). A′ was 29% higher in trees and ≈ 20% higher
in legumes grown under elevated [CO2].

Fig. 1 Mean response to elevated [CO2] (±95% CI) of light-
saturated CO2 uptake (Asat), diurnal carbon assimilation (A′), 
apparent quantum yield of CO2 uptake (AQY), stomatal 
conductance (gs), ratio of intercellular (ci) to atmospheric CO2 
concentration (ca), and instantaneous transpiration efficiency (ITE). 
Number of species, FACE experiments and individual observations for 
each response are given in Appendix 2.

Fig. 2 Comparative photosynthetic responses of C3 and C4 species to 
elevated [CO2] enrichment. �, Results from this meta-analysis; �, 
comparative results from a prior meta-analysis of C3 and C4 wild grass 
(Poaceae) species (Wand et al., 1999). Number of species, FACE 
experiments and individual observations for each response in our 
meta-analysis are given in Appendix 2.
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The experimental site also affected how a functional group
responded to elevated [CO2] (Appendix 2). Photosynthetic
stimulation of plants grown at the BioCON experiment was
less than that of plants grown at the Swiss FACE and Soy-
FACE experiments. C3 grasses grown at the BioCON experi-
ment showed a 16% increase in Asat, while Lolium perenne at
the Swiss FACE experiment had a 41% increase in Asat
(Appendix 2). The difference in response in the two systems
was probably caused by nutrient status and reductions in leaf
N content in species grown at the BioCON experiment
(Nowak et al., 2004). The Swiss FACE experiment was a
managed agricultural pasture (with 10–14 or 42–56 g N m−2

yr−1; Zanetti et al., 1996), and the BioCON experiment was
a natural prairie grassland experiment with no nutrient input
on some plots and 4 g N m−2 yr−1 on other plots (Reich et al.,
2001). Even under low N-fertilization input typical of
low-intensity grassland management, L. perenne showed an
approximately 40% increase in Asat on average over the 10 yr
experiment (Ainsworth et al., 2003). Legumes grown at the
BioCON experiment did not show any stimulation in Asat
with growth at elevated [CO2]. Asat of legumes grown at the
Swiss FACE experiment and the SoyFACE experiment was
stimulated by 37 and 22%, respectively.

The decrease in gs with elevated [CO2] was consistent with
previously reported decreases in gs for European tree species
(Medlyn et al., 2001). However, the decrease in gs varied with
site (Table 2). Plants under FACE at the Eschikon experiment,
which had the highest elevated [CO2] (600 ppm; Table 1),
showed the greatest decrease in gs (≈ 33%; Appendix 2). Poplar
species in the PopFACE experiment did not show any change
in gs with growth at elevated [CO2] (Table 2; Appendix 2).

3. Temperature and stress

Stimulation of photosynthesis at elevated [CO2] is theoretically
predicted to be greater at higher temperatures (Drake et al., 1997).
When the FACE data were divided between experiments
conducted below 25°C and those conducted above 25°C, this
prediction was supported. At lower temperatures (< 25°C) Asat
was increased by 19%, and at temperatures above 25°C Asat
was increased by 30% when plants were grown under elevated
[CO2] (QB = 5.37, P < 0.05; Fig. 4).

Ozone tended to enhance the response of Asat to elevated
[CO2], and low N tended to reduce the response (Fig. 4). On
average, plants grown without stress showed a 36% stimulation
in Asat, trees in Rhinelander grown under high ozone showed
a 59% stimulation, and plants grown under low-N treatment
showed a 27.5% stimulation. Stress also significantly affected
gs (Table 2). In general, decreases in gs with elevated [CO2]
were exacerbated by low N and drought stress (Fig. 4).

IV. Acclimation of photosynthesis

To maintain a balance in N and other resources allocated to the
reactions that control photosynthesis, species acclimate to growth
in elevated [CO2] (Sage, 1990; Gunderson & Wullschleger,
1994; Drake et al., 1997). A reduced or acclimated stimu-
lation of A has been mechanistically and quantitatively
attributed to decreased maximum apparent carboxylation
velocity (Vc,max) and investment in Rubisco (Rogers &
Humphries, 2000). Photosynthetic acclimation is frequently
reported along with an accumulation of leaf nonstructural
carbohydrates and a decrease in N concentration in the leaf
and plant (Stitt & Krapp, 1999; Nowak et al., 2004). Plant
growth in elevated [CO2] in FACE experiments resulted in
significant acclimation of C3 photosynthesis (Fig. 5). Vc,max

Fig. 3 Comparative photosynthetic responses of different C3 
functional groups to elevated [CO2]. Results from: �, this meta-
analysis; �, a meta-analysis of tree species (Curtis & Wang, 1998); �, 
a meta-analysis of European tree species (Medlyn et al., 2001); �, a 
meta-analysis of C3 grasses (Wand et al., 1999). Number of species, 
FACE experiments and individual observations for each response in 
our meta-analysis are given in Appendix 2.

Fig. 4 Comparative responses of light-saturated CO2 uptake (Asat) 
and stomatal conductance (gs) in different growth temperatures and 
stress treatments. Number of species, FACE experiments and 
individual observations for each response are given in Appendix 2.
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was reduced on average by 13%, and the maximum rate of
electron transport ( Jmax) was reduced by 5%. There was also
a significant 5% shift (reduction) in the ratio of Vc,max : Jmax.
It has long been recognized that as CO2 rises, metabolic
control of light-saturated photosynthesis by Rubisco (Vc,max)
is decreased, and control by the rate of regeneration of RubP
is increased ( Jmax) (Long & Drake, 1992). Along with
acclimation of photosynthetic capacity, there were significant
reductions in Rubisco content and N content, measured on
an area basis. Simultaneously, sugar and starch were increased
substantially with growth under elevated [CO2] (Fig. 5).
Variation in acclimation was apparent; functional groups
showed different responses and the environmental conditions
also altered acclimation.

1. Functional groups and FACE sites

The magnitude of photosynthetic acclimation differed between
C3 functional groups. Vc,max tended to be reduced to a greater
extent in grasses and shrubs than in trees and legumes (Fig. 6).
At the FACTS 1, PopFACE, SoyFACE and New Zealand sites,
Vc,max was not significantly changed under elevated [CO2]
(Appendix 2). Jmax was significantly reduced in C3 grasses, and
there was no significant downregulation of Jmax or N (measured
on an area basis) in trees and legumes (Fig. 6). Why would trees
and legumes have different responses from other functional
groups? The N-fixing ability of legumes generally enhances
their response to elevated [CO2] (Hebeisen et al., 1997;
Lüscher et al., 1998, 2000). In the SoyFACE experiment,
non-nodulating soybeans showed downregulation of Vc,max
in elevated [CO2], while nodulating varieties maintained

the same photosynthetic capacity under ambient and
elevated [CO2] (Ainsworth et al., 2004). Lüscher et al. (2000)
demonstrated the importance of N2-fixing capacity in the
Swiss FACE experiment with effectively and ineffectively
nodulating Medicago sativa. Under elevated [CO2], effectively
nodulating M. sativa strongly increased harvestable biomass
and N yield, while ineffectively nodulating plants were
negatively affected by FACE. However, at the New Zealand
FACE experiment photosynthetic acclimation was stronger
in the two N-fixing species than in the grass species (von
Caemmerer et al., 2001).

Downregulation of photosynthetic capacity in trees in
response to FACE is highly variable. Medlyn et al. (1999)
reported a similar decrease in Vc,max for European forest
species; however, they also reported a significant 12% decrease
in Jmax for field-grown tree species under elevated [CO2]
(Fig. 6). Much of the data for trees included in this meta-
analysis came from the Duke FACE experiment, where both
loblolly pine and understorey hardwood species were
examined (Ellsworth et al., 1995; DeLucia & Thomas, 2000;
Naumburg & Ellsworth, 2000; Singsaas et al., 2000; Herrick
& Thomas, 2001; Rogers & Ellsworth, 2002). DeLucia &
Thomas (2000) reported that for four understorey hardwood
tree species acclimation of photosynthesis did not involve any
decrease in Vc,max or Rubisco, but leaves had increased capacity
for RubP regeneration, which increased their ability to utilize
sunflecks. These results were reflected in this meta-analysis,
where Jmax was significantly increased and Vc,max : Jmax was
significantly decreased at the FACTS 1 site (Appendix 2).
In the POPFACE experiment, downregulation of Vc,max was
reported only in the slowest growing of the three poplar
clones, Populus alba, which probably had the smallest sink

Fig. 5 Mean response of maximum carboxylation rate (Vc,max), 
maximum rate of electron transport (Jmax), ratio of Vc,max : Jmax, 
Rubisco content (mass/unit area), nitrogen content reported on both 
area and mass basis, chlorophyll content reported on both area and 
mass basis, sugar and starch content reported on area basis, ±95% CI. 
Number of species, FACE experiments and individual observations for 
each response are given in Appendix 2.

Fig. 6 Comparative acclimation responses of different C3 functional 
groups to elevated [CO2]. Results from: �, this meta-analysis; �, a 
prior meta-analysis of European tree species (Medlyn et al., 2001). 
Number of species, FACE experiments and individual observations for 
each response are given in Appendix 2.
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capacity (Hovenden, 2003). Sink capacity may also explain
variable downregulation of Vc,max in Populus tremuloides in the
Rhinelander FACE experiment. Only mid- and lower-canopy
leaves showed significant downregulation of photosynthetic
capacity, while upper-canopy leaves with close proximity to
rapidly growing sinks did not show any change in photosyn-
thetic capacity (Takeuchi et al., 2001).

2. Nitrogen

Acclimation of photosynthesis to elevated [CO2] has been
reported to be more pronounced when plants are N-limited,
and to be absent when N supply is adequate (Stitt & Krapp,
1999; Isopp et al., 2000). Inadequate N supply could restrict
the development of new sinks and therefore exacerbate the
source–sink imbalance in plants grown under elevated [CO2]
(Stitt & Krapp, 1999; Hymus et al., 2001). The results from
the FACE experiments support this hypothesis. Under low N
conditions there was a 22% decrease in Vc,max, and under high
N conditions there was only a 12% decrease in Vc,max (Fig. 6).
Nitrogen reported on an area basis was reduced 12% in plants
grown under low-N conditions and elevated [CO2], but was
not changed under unstressed conditions (Appendix 2).

Another explanation for accentuated acclimation under
low-N conditions is that the decrease in Rubisco may reflect
a general decrease in leaf protein caused by reallocation of N
to younger leaves or earlier leaf senescence in N-limited plants
(Stitt & Krapp, 1999). However, the results from the FACE
experiments suggest that the decrease in Rubisco is specific,
and not part of a general decrease in leaf protein. There was
no change in chlorophyll content when measured on an area
basis (Fig. 5). Assuming Rubisco to account for 25% of leaf N
(Spreitzer & Salvucci, 2002), the 20% decrease in Rubisco
could account for all of the 5% decrease in leaf N.

V. Growth, above-ground production and yield

Growth and above-ground biomass production generally
increased with exposure to elevated [CO2]; however, the
magnitude of the response varied between species, growing
seasons and experimental conditions. Elevated [CO2] resulted
in taller plants with larger stem diameter, increased branching
and leaf number (Fig. 7). Surprisingly, stimulation of plant
height with elevated [CO2] was greater in the third growing
season than in the first and second (Appendix 2). Leaf-area
index (LAI) was not significantly affected by growth at
elevated [CO2], although this varied with functional group.
Specific leaf area decreased 6% in plants exposed to elevated
[CO2], although this trend also varied with plant functional
group and species. One largely unanswered question in forest
ecosystems is whether biomass production will be increased
along with the increase in photosynthesis (Karnosky, 2003).
Our results showed greater allocation to wood and structure
in woody plants and a 28% increase in above-ground dry

matter production for trees grown under elevated [CO2]
(Fig. 8). Crop yield increased on average by only 17%
(Fig. 7), considerably lower than previous estimates of crop
yield increase in chambers (Kimball, 1983; Cure & Acock,
1986; Amthor, 2001; Jablonski et al., 2002).

1. Growth and leaf area

Plant height increased 14% in the third year of exposure to
elevated [CO2], but was not affected in the first 2 yr of
exposure (QB = 19.954, P < 0.001; Appendix 2). This result
contrasts with the expectation that initial stimulation of
growth in response to elevated [CO2] will diminish over time,
possibly because of modifications in biomass allocation and
phenology (Ward & Strain, 1999). Plant height increased
more in shrubs and trees than C3 crops (Fig. 8). Thus those
FACE experiments with trees and shrubs (FACTS 1, Rhine-
lander, PopFACE and NV Desert FACE) showed significant
increases in plant height, while Maricopa and Rapolano showed
no change in plant height (Appendix 2). Stem diameter increased
9% on average, and was unaffected by length of exposure to
elevated [CO2]. Increased stem diameter was significantly
affected by stress. Populus tremuloides grown under elevated
[CO2] and increased [O3] showed a marginal 5% increase in
stem diameter. Branch number was not highly reported in the
FACE literature, but the limited results from six species at
three FACE sites suggested an increase of 25% (Fig. 7). These
results are consistent with those from a recent review of tree
responses to elevated [CO2], where a persistent growth response
and increased branching were reported (Saxe et al., 1998).

Overall, for 12 species in seven FACE experiments, leaf
number was increased by 8% with growth at elevated [CO2]

Fig. 7 Mean response to elevated [CO2] of plant height, stem 
diameter, leaf number, leaf-area index (LAI), specific leaf area (SLA), 
above-ground dry matter production (DMP), and crop yield. Number 
of species, FACE experiments and individual observations for each 
response are given in Appendix 2.
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(Fig. 7). On average, LAI did not change with growth in
elevated [CO2], but again this response varied with functional
type. Trees had a 21% increase in LAI, but herbaceous C3
grasses did not show a significant change in LAI (Fig. 8). Trees
have increased stem diameter and plant height, which allows
for more leaves, either by more stems or greater hydraulic con-
ductance per stem. The increase in LAI in trees could result in
more rapid canopy closure, which would affect light intercep-
tion (Ward & Strain, 1999) and potentially increase tree density
in mixed grass/tree systems such as savanna and woodland
ecosystems (as modeled by Bond et al., 2003). The OzFACE
experiment in tropical savanna in Yabula, Australia should
help answer questions about mixed grassland/woodland
dynamics. Results from the Rhinelander experiment (reviewed
by Karnosky et al., 2003) suggest that while elevated [CO2]
increases LAI in P. tremuloides, ozone stress reduces LAI.
Therefore when both CO2 and O3 are elevated there is no
change in LAI (Karnosky et al., 2003).

2. Above-ground dry matter production

Above-ground dry matter production increased 20% on
average for 29 C3 species grown in six different FACE
experiments (Fig. 8). The increase in C3 biomass with
elevated [CO2] is consistent with the increase in C3 plant
mass reported by Jablonski et al. (2002) (Fig. 8). There was

no change in dry matter production for the five C4 species
measured at the Maricopa FACE experiment and the
BioCON FACE experiment, and neither C4 crops nor C4
wild grasses showed any dry matter production stimulation
with growth at elevated [CO2] (Fig. 8).

Stimulation of dry matter production differed between
functional groups (Table 2; Fig. 8). Trees showed the largest
response in dry matter production (28%), followed by leg-
umes (24%; Fig. 8). C3 grasses only showed a 10% increase in
above-ground production (Fig. 8). Curtis & Wang (1998)
reported a 28.8% increase in total biomass for primarily
young or juvenile trees grown under elevated [CO2]
(≈ 700 ppm) in mostly chamber or glasshouse conditions.
This suggests that either forests saturate their response
at approximate 550 ppm, or the response of trees in FACE
experiments differs from the that in growth chamber and
glasshouse experiments. Trees grown under nutrient limita-
tion had a nonsignificant 14% stimulation in above-ground
biomass, although this is based on only four studies. The
increase in legume production is less than that reported in two
earlier meta-analyses for soybean biomass (Ainsworth et al.,
2002) and legume biomass ( Jablonski et al., 2002); however
the CO2 concentration in FACE experiments is lower than
the average CO2 concentration of most growth chamber and
glasshouse experiments. The response of C3 grasses is substan-
tially lower than the 38% increase in above-ground biomass
of C3 Poaceae species reported by Wand et al. (1999). How-
ever, many of the data for our study come from the BioCON
experiment and the low-N treatment at the Eschikon FACE
experiment. The response of above-ground biomass to ele-
vated [CO2] is limited under low-nutrient conditions in wild
C4 grasses (Wand et al., 1999).

3. Crop yield

The average crop yield stimulation of 17% is lower than
previous estimates of CO2 effects on crop yield, which
ranged from 28 to 35% (Kimball, 1983; Cure & Acock, 1986;
Amthor, 2001; Jablonski, 2002; Kimball et al., 2002). One
explanation of the difference is that FACE experiments have
not elevated [CO2] above 600 ppm. However, as a curvilinear
increase with increase in [CO2] is projected, this value is
less than expected from chamber studies. Of the four crops
analyzed in this meta-analysis, only cotton, a woody crop,
showed a significant yield enhancement with growth at
elevated [CO2]. The stimulation in cotton yield with growth
at elevated [CO2] was 42% on average. Mauney et al. (1994)
found that the primary effect of FACE on cotton was to
sustain the initial rate of boll loading in cotton for a longer
period. The increased yield is also attributable to more rapid
leaf development before fruiting, greater number of flowers,
and sustained fruiting for a longer period (Mauney et al., 1994).

Wheat and rice also showed trends towards increases in
yield, but these increases were not statistically significant

Fig. 8 Comparative responses to elevated [CO2] of different 
functional groups and experimental conditions on growth and yield 
variables. Results from: �, this meta-analysis; �, a meta-analysis of 
tree species (Curtis & Wang, 1998); �, a meta-analysis of C4 grasses 
(Wand et al., 1999). �, comparative results from a meta-analysis of 
79 crop and wild species (Jablonski et al., 2002). Number of species, 
FACE experiments and individual observations for each response are 
given in Appendix 2. 
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(Fig. 8). The trend of ≈ 15% increase in wheat yield is in agree-
ment with the estimates of Amthor (2001) and Jablonski et al.
(2002). Sorghum yield was not affected by growth at elevated
[CO2]. The sorghum data were taken from the Maricopa
experiment where sorghum was grown under both wet and
dry conditions (Ottman et al., 2001). Ottman et al. (2001)
reported that sorghum yield was increased in elevated [CO2]
under dry, but not under wet, conditions. The meta-analysis
reflected these interactions between growth environment and
elevated [CO2] (Fig. 8; Table 2). The yield under FACE con-
ditions with no reported stress was 40%; however that result
was based on only five observations. Under wet conditions,
there was no increase in yield with elevated [CO2], and under
dry conditions there was a 28% increase in yield (Appendix
2). Low N fertilization also eliminated any yield response to
elevated [CO2] (Appendix 2).

VI. So, what have we learned?

To date, only two large-scale replicated FACE facilities have
reported elevated [CO2] effects on yields of C3 food crops,
wheat and rice. Both these grains have shown overall smaller
increases than were expected based on earlier enclosure
studies. Over 3 yr of growth, rice seed yield was increased by
7–5% in elevated [CO2] (Kim et al., 2003). Spring wheat
yield increased only by 8% in two growing seasons (Kimball
et al., 1995). These FACE experiments elevated [CO2] by
≈ 200 ppm above current ambient, whereas the average
increase was 350 ppm in the chamber studies surveyed by
Kimball (1983). If a linear response of yield to elevated [CO2]
is assumed, then the expected yield increase that would have
been predicted in these FACE studies, based on the earlier
enclosure studies, is ≈ 19%. Further, this 19% is probably a
minimum, as it is expected that increase in production
with increase in [CO2] will show diminishing returns. For
example, in open-top chambers grain yield of wheat (cv.
Minaret) increased 27% on elevation of [CO2] from 359 to
534 ppm, but only a further 3% increase was observed when
comparing plants grown at 649 to 534 ppm (Fangmeier et al.,
1996). A similarly smaller than predicted response has
recently been reported for soybean grown at elevated [CO2]
within the SoyFACE experiment (Morgan, 2004).

This discrepancy has wide importance as the chamber
values have formed the basis for projecting global and regional
food supply, and the stimulation attributed to elevated [CO2]
has commonly been presumed to offset yield losses that would
otherwise result from increased stresses, including higher
temperature, elevated ground-level ozone and changes in soil
moisture. For example, an integrated assessment of Hadley
Center (HadCM2) climate-change impacts on agricultural
productivity in the contiguous USA predicted climate change
for 2090 would diminish wheat yields in most of the northern
US wheat belt in the absence of any direct effect of elevated
[CO2] (Izaurralde et al., 2003). When the direct effects of

elevated [CO2] are added, the combined effect that is simulated
is an increase in yields. However, a 33% yield increase caused
by increasing [CO2] by 350 ppm is assumed (Izaurralde et al.,
2003). If chamber experiments have overestimated the direct
effect of increased [CO2], this would have a major impact on
projections of future crop yields and wider implications for
extrapolations from chamber studies to terrestrial ecosystems
in general.

Could the lower than expected values in FACE be a flaw of
the technology? Because of the difficulty of control in the
absence of wind and the cost of CO2, most of the FACE
systems do not elevate CO2 at night. Elevated [CO2] has been
suggested to inhibit dark respiration; however, re-evaluation
of the methods used to measure dark respiration under ele-
vated [CO2] suggests that this apparent effect was an artifact
of earlier measurement systems, and is absent when these
artifacts are eliminated (Amthor, 2000; Jahnke, 2001; Davey
et al., 2004; Long et al., 2004). Using young tropical trees,
Holtum & Winter (2003) recently showed that high-
frequency fluctuations in [CO2] of the type produced by FACE
technology may diminish the response of photosynthesis to
elevated [CO2]. However, this seems an unlikely explanation
of the lower than expected stimulation in the FACE crop
experiments. First, Hendrey et al. (1997) found no difference
between constant and fluctuating elevated [CO2] on whole-
chain photosynthetic electron transport in wheat, provided
that oscillations had a half-cycle of 30 s or less, which would
include most of the fluctuations observed in FACE systems.
Second, large fluctuations in [CO2] are also observed in open-
top chambers (McLeod & Long, 1999), which account for
much of the database on effects of elevated [CO2] on yield
(Ainsworth et al., 2002). Third, trees, in contrast to crops,
showed greater increases in production than predicted from
chamber studies.

The general conclusions from this meta-analysis and a
measure of our certainty around them are summarized in
Table 3. Functional groups differed in their response to
FACE. Trees were generally more responsive than grass, forbs,
legumes and crops, showing an average 47% stimulation in
Asat. The degree of photosynthetic acclimation was low, and
the increase in leaf carbohydrates was also less than the
increase for other functional groups. Trees also showed a
significant increase in LAI, while there was no change in LAI in
crops and grasses grown under FACE. Trees also showed the
largest stimulation in dry matter production. While it may be
surprising that trees responded more than herbaceous species,
it is important to keep in mind that, for the most part, the
trees grown under FACE conditions are young and rapidly
growing. Nevertheless, in contrast to chamber studies, trees
have been grown to canopy closure and to 6–20 m in height.
Only with long-term exposure to FACE will the affect of
elevated [CO2] on mature trees be revealed. At present, the
indication is that the response is larger than anticipated from
chamber studies. C4 species have shown a far smaller response
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in FACE than predicted by chamber studies. Most significant
is that the decrease in N, often assumed to lead to an expected
diminution of the response of vegetation to elevated [CO2] in
the long term, is only marginal in FACE. Nitrogen per unit
leaf area was decreased by only 5% (Fig. 5), and this could
possibly be explained by the loss of Rubisco alone. The many
large differences between the findings within FACE and prior
chamber experiments (Table 3) clearly show the need for a
wider use of FACE, and most importantly side-by-side exper-
iments to separate technique from site difference. The greater
responses of trees to CO2 in FACE than in chambers, and the
lesser responses of crops in FACE relative to chambers, show
two urgent needs. More extensive FACE experimentation
with the major crops and within the major growing zones
will allow better forecasting of the future food supply, given
that predictions currently based on chamber experiments
appear very optimistic. Similarly, longer-term FACE experi-
ments with forests where responses may have been underesti-
mated will be critical. FACE experiments with tropical forests,
which remain completely unrepresented despite representing
50% of C in terrestrial biomass, are an obvious need. The
much smaller reduction in N observed in FACE relative to
chamber studies also requires some rethinking of effects of
elevated [CO2] on N limitation and terrestrial biogeochemical
models of future N and C cycles. Lack of a response in LAI to
elevated [CO2] in all functional types, except trees, similarly
suggests a need for adjusting current models that are being
used to project future vegetation. Future FACE experiments
should also consider multiple levels of elevated [CO2],
ranging from 50 ppm above current ambient to double current
ambient [CO2]. This would allow more accurate scaling of
physiological results and validation of ecosystem models.
Finally, while large-scale FACE plots provide the most realistic
mimic of a future elevated CO2 atmosphere, they nevertheless
have their limitations. While allowing far larger treatment

plots than other technologies, a forest FACE ring still has a
diameter close to the maximum height of its trees at maturity.
This limits the potential for studying interactions with other
environmental changes within the plot. Ever-decreasing
prices of control hardware, improved control algorithms, and
judicious placement near cheap or free sources of CO2 should
allow the development of much larger release arrays that
could elevate CO2 over much larger areas or provide control-
led CO2 gradients. There is therefore a need to improve the
technology as well as to maintain and, in some areas, expand
FACE.
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Appendix 2. Results of the meta-analysis of FACE effects
 Results of the meta-analysis of FACE effects on light-saturated CO2 uptake (Asat), diurnal carbon assimilation (A′), apparent maximum quantum 
yield of CO2 uptake (AQY), stomatal conductance (gs), ratio of intercellular (ci) to atmospheric CO2 concentration (ca), instantaneous 
transpiration efficiency (ITE), maximum carboxylation rate (Vc,max), maximum rate of electron transport (Jmax), ratio of Vc,max : Jmax, Rubisco 
content, N content, chlorophyll content, sugar content, starch content, plant height, stem diameter, branch number, leaf number, leaf-area 
index, specific leaf area, crop yield and above-ground dry matter productio

Variable Interaction Category df
Number of 
species

Number of 
FACE sites

Effect 
size (E ) Lower CI Upper CI

Asat 326 45 11 1.311 1.279 1.344
C3 vs C4 C3 297 40 11 1.337 1.304 1.371

C4 28 5 3 1.106 1.024 1.194
FACE site BioCON 11 3 0.982 0.886 1.089
(C4) Maricopa 11 1 1.196 1.089 1.313

SoyFACE 4 1 1.147 0.932 1.41
Temperature <25°C 31 4 4 1.185 1.099 1.278
(C3) = 25°C 221 32 11 1.299 1.263 1.336
Functional Tree 126 12 5 1.474 1.425 1.524
group Shrub 18 3 1 1.211 1.072 1.367
(C3) Grass 62 5 3 1.363 1.299 1.43

Forb 16 5 2 1.148 1.042 1.264
Legume 29 6 3 1.207 1.129 1.29
Crop (high N) 11 2 2 1.365 1.222 1.525

Stress None 168 28 11 1.356 1.31 1.403
(C3) Ozone 12 1 1 1.592 1.381 1.836

Low N 55 15 3 1.275 1.2 1.354
FACE site BioCON 12 4 1.155 1.036 1.288
(C3 grasses) Eschikon 50 3 1.41 1.355 1.468
FACE site BioCON 9 3 1.076 0.981 1.179
(Legume) Eschikon 7 1 1.367 1.213 1.541

SoyFACE 11 1 1.223 1.134 1.32

A′′′′ 145 16 6 1.284 1.241 1.339
C3 vs C4 C3 142 15 6 1.294 1.25 1.339

C4 5 1 1 1.07 0.845 1.355
Functional Tree 19 5 2 1.286 1.177 1.405
group (C3) Shrub 29 3 1 1.462 1.331 1.605

Grass 39 2 2 1.373 1.284 1.468
Legume 6 1 1 1.229 1.036 1.459

FACE site Rhinelander 9 1 1.021 0.9 1.16
Duke 2 1 1.648 0.476 5.705
NV Desert 34 5 1.425 1.322 1.537
PopFACE 9 3 1.555 1.353 1.787
Maricopa 43 2 1.192 1.131 1.256
Eschikon 38 1 1.366 1.282 1.454
SoyFACE 12 2 1.162 1.048 1.287

AQY 20 8 3 1.122 1.034 1.215
FACE site Rhinelander 3 1 1.085 0.923 1.275

Duke 11 4 1.255 1.173 1.344
PopFACE 6 3 0.98 0.88 1.091

gs 234 40 12 0.8 0.774 0.827
Functional Tree 78 6 3 0.841 0.795 0.891
group Shrub 41 4 1 0.884 0.809 0.965

C3 grass 16 6 3 0.778 0.684 0.884
C4 grass 11 3 1 0.751 0.62 0.909
Forb 16 3 1 0.813 0.717 0.922
Legume 24 4 3 0.771 0.693 0.858

Site Rhinelander 12 1 0.803 0.704 0.916
Oak Ridge 27 1 0.773 0.697 0.858
Duke 15 6 0.829 0.702 0.98
NV Desert 44 6 0.88 0.809 0.959
PopFACE 21 3 0.995 0.886 1.119
Rapolano 5 4 0.803 0.704 0.916



Tansley review

© New Phytologist (2005) www.newphytologist.org New Phytologist (2005) 165: 351–372

Review 369

BioCON 46 12 0.759 0.704 0.819
Maricopa 33 3 0.702 0.535 0.922
Eschikon 16 6 0.667 0.606 0.734
SoyFACE 12 2 0.834 0.731 0.952

Stress None 145 35 10 0.846 0.811 0.883
Low N 37 12 3 0.705 0.645 0.769
Ozone 6 1 1 0.8 0.644 0.995
Drought 6 1 1 0.597 0.45 0.793

ci : ca 47 12 7 0.981 0.961 1.001
Site OakRidge 2 1 1.019 0.639 1.625

NV Desert 6 1 1.001 0.945 1.06
Rapolano 7 4 1.019 0.972 1.067
Eschikon 14 4 1.018 0.981 1.055
Maricopa 18 1 0.933 0.907 0.959

ITE 34 7 4 1.543 1.38 1.726
C3 vs C4 C3 28 6 3 1.68 1.549 1.883

C4 5 1 1 1.062 0.826 .366
Functional Tree 26 4 3 1.737 1.599 1.887
group C3 grass 3 1 1 1.258 0.753 2.103

C4 grass 5 1 1 1.069 0.84 1.361

Vc,max 227 25 9 0.869 0.844 0.893
Functional Tree 71 11 4 0.939 0.893 0.988
group (C3) Shrub 19 4 1 0.822 0.728 0.928

Grass 97 3 2 0.829 0.793 0.868
Legume 17 3 3 0.878 0.787 0.979

Site Duke 29 7 0.941 0.878 1.009
PopFACE 29 3 0.939 0.869 1.017
NV Desert 8 6 0.89 0.803 0.987
Eschikon 14 6 0.829 0.797 0.864
SoyFACE 6 1 0.897 0.736 1.093
New Zealand 6 3 0.75 0.572 1.069

Environment Upper canopy 80 14 7 0.902 0.86 0.946
Lower canopy 14 3 4 0.878 0.771 0.993
Understorey 17 6 1 0.999 0.878 1.137
Old 10 7 3 0.876 0.758 1.013
Young 11 7 3 0.947 0.815 1.106

Nitrogen Low N 63 5 4 0.776 0.734 0.82
High N 48 4 4 0.879 0.826 0.935

Jmax 167 19 8 0.951 0.926 0.977
Functional Tree 57 9 4 0.995 0.955 1.038
group (C3) Grass 72 2 3 0.922 0.888 0.958

Legume 17 2 2 0.936 0.862 1.017
Site Duke 33 5 1.089 1.025 1.159

NV Desert 7 3 0.805 0.678 0.956
PopFACE 28 3 0.965 0.912 1.02
Eschikon 79 5 0.914 0.881 0.949
SoyFACE 5 1 0.991 0.855 1.147
New Zealand 5 3 0.779 0.56 1.086

Stress None 84 17 7 0.995 0.958 1.033
Low N 39 4 3 0.886 0.839 0.935

Vc,max : Jmax 96 19 8 0.951 0.926 0.977
Functional Tree 61 11 4 0.968 0.947 0.99
group (C3) Shrub 7 2 1 1.054 0.983 1.131

Legume 16 3 3 0.945 0.912 0.979

Rubisco content (mass/unit area) 23 6 3 0.806 0.692 0.94

N (mass/unit area) 123 21 7 0.951 0.926 0.977
Functional Tree 36 3 3 1.02 0.978 1.065

Variable Interaction Category df
Number of 
species

Number of 
FACE sites

Effect 
size (E ) Lower CI Upper CI
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group Forb 12 1 3 0.845 0.781 0.914
Legume 14 6 2 0.903 0.85 1.046
C3 grass 22 4 3 0.94 0.877 1.009
C4 grass 13 4 2 0.982 0.877 1.113

Site Rhinelander 8 1 0.948 0.857 1.049
OakRidge 6 1 0.987 0.887 1.098
Duke 28 2 1.031 0.981 1.083
BioCON 45 13 0.905 0.863 0.949
Japan 17 1 0.918 0.859 0.982
Eschikon 6 1 1.02 0.892 1.167
New Zealand 7 3 0.836 0.741 0.944

Stress None 61 9 5 0.99 0.957 1.024
Low N 31 16 4 0.879 0.829 0.931

Environment Upper canopy 20 3 3 1.063 1.002 1.127
(trees)
Lower canopy 17 3 3 0.961 0.901 1.025

N (mass/mass) 99 5 11 0.868 0.836 0.901
Functional Tree 53 6 3 0.899 0.87 0.93
group Shrub 5 2 1 0.852 0.752 0.966

C3 grass 8 1 1 0.882 0.807 0.964
C3 crop 30 2 1 0.819 0.785 0.854

N (% dry mass) 32 4 3 0.871 0.838 0.906
Stress None 19 4 3 0.923 0.889 0.958

Ozone 14 2 1 0.809 0.77 0.849

Chlorophyll (mass/unit area) 39 7 3 0.969 0.929 1.011

Chlorophyll (mass/mass) 31 6 3 0.831 0.73 0.947

Chlorophyll a : chlorophyll b 19 6 3 1.058 1.005 1.115

Sugar (mass/unit area) 30 4 4 1.319 1.179 1.476
Functional Tree 10 2 2 1.114 0.901 1.377
group Legume 7 1 1 1.427 1.081 1.884
Stress None 18 3 3 1.225 1.077 1.393

Dry 5 1 1 1.7 1.299 2.225
Wet 5 1 1 1.26 0.962 1.65

Starch (mass/unit area) 30 4 4 1.844 1.615 2.104
Functional Tree 10 2 2 1.373 1.1 1.715
group Legume 7 1 1 1.842 1.398 2.426
Site OakRidge 6 1 1.312 0.982 1.754

Duke 3 1 1.539 0.844 2.808
Maricopa 11 1 2.287 1.901 2.755
SoyFACE 7 1 1.842 1.367 2.429

Stress None 18 3 3 1.554 1.327 1.82
Dry 5 1 1 2.519 1.86 3.41

Plant height 58 10 5 1.066 1.043 1.089
Functional Tree 44 4 2 1.06 1.035 1.085
group Shrub 8 2 1 1.238 1.123 1.361
Site Rhinelander 33 1 1.053 1.023 1.085

PopFACE 9 3 1.075 1.026 1.127
Rapolano 4 3 1.013 0.919 1.115
NV Desert 8 2 1.241 1.128 1.365
Maricopa 3 2 1.108 0.909 1.35

Growing 1 14 10 5 1.035 0.998 1.071
season 2 16 6 4 1.034 1 1.068

3 12 6 3 1.138 1.093 1.185

Stem diameter 53 6 3 1.092 1.066 1.119
Stress None 34 6 3 1.115 1.081 1.15

Ozone 20 1 1 1.049 1.004 1.096

Variable Interaction Category df
Number of 
species

Number of 
FACE sites

Effect 
size (E ) Lower CI Upper CI
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Branch number 12 6 3 1.247 1.052 1.478

Leaf number 44 12 7 1.075 1.045 1.106
Site Rhinelander 5 1 1.021 0.933 1.116

Desert 5 1 1.225 1.029 1.459
Eschikon 11 4 1.394 1.243 1.563

Leaf-area index 53 11 6 1.067 0.999 1.142
Functional Tree 15 6 3 1.211 1.044 1.404
group C3 grass 10 1 1 1.103 0.92 1.323

Specific leaf area 113 24 6 0.941 0.92 0.963
C3 vs C4 C3 102 20 6 0.925 0.908 0.952

C4 12 2 4 1.025 0.959 1.096
Functional Tree 56 5 14 0.916 0.886 0.947
group Forb 12 1 3 0.944 0.876 1.017

Legume 10 1 3 0.991 0.917 1.072
C3 grass 24 2 4 0.925 0.884 0.968
C4 grass 12 1 3 1.026 0.96 1.095

Site Duke 41 6 0.903 0.87 0.936
PopFACE 7 3 0.966 0.892 1.046
BioCON 45 13 0.982 0.952 1.012
Eschikon 11 1 0.896 0.84 0.956

Dry matter production 174 34 6 1.17 1.145 1.196
C3 vs C4 C3 130 29 6 1.198 1.171 1.226

C4 11 5 2 1.036 0.963 1.115
Functional Tree 9 7 2 1.28 1.064 1.541
group C4 crop 6 1 1 1.067 0.978 1.166

C3 grass 41 8 3 1.105 1.065 1.148
C4 grass 3 4 1 0.963 0.804 1.154
Legume 18 6 3 1.203 1.137 1.273

Site Rapolano 4 3 1.288 1.107 1.498
Maricopa 27 3 1.205 1.146 1.268
Eschikon 55 7 1.156 1.113 1.201
Japan 17 1 1.216 1.141 1.296
BioCON 46 16 1.118 1.071 1.166
New Zealand 14 6 1.286 1.115 1.482

Crop yield 27 6 3 1.173 1.102 1.249
Species Sorghum 11 1 1.048 0.97 1.132

Cotton 6 1 1.422 1.237 1.636
Wheat 4 1 1.144 0.984 1.331
Rice 5 1 1.104 0.936 1.302

Stress None 4 1.404 1.139 1.731
Wet conditions 7 1.051 0.955 1.156
Drought 7 1.277 1.143 1.426
Low N 3 1.084 0.770 1.527

Main effects of FACE in bold font, along with degrees of freedom for each analysis and number of species and FACE sites that the analysis 
included.
Different categorical groups or interactions were tested further. The between-group heterogeneity (QB) across categorical variables and statistical 
significance of significant categorical differences are reported (e.g. the first categorical test determined the difference in the response of Asat 
between C3 and C4 species).

Variable Interaction Category df
Number of 
species

Number of 
FACE sites

Effect 
size (E ) Lower CI Upper CI

Appendix 2. Continued
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